Résulat sous forme de racine carré TI 83 Plus

[Fermé]
Signaler
Messages postés
4
Date d'inscription
dimanche 3 octobre 2010
Statut
Membre
Dernière intervention
29 mai 2012
-
 Thayiu -
Bonjour,

Cela fait maitenant 1 semaine que j'ai cherché partout (c'est à dire notice d'utilisation, manuel d'utilisation, que ce soit celle donnée avec la calculatrice ou celles sur internet, forum, et j'ai même demandé à mon professeur) comment afficher un résultat sous forme de racine carrée sur ma TI 83 Plus !! Par exemple : quand je fait racine de 8, au lieu d'avoir 2.828427 ect... je voudrais avoir 2 racine de 2. Je suis en premiere S ça m'empoisonne...

Alors sur ce coup si je demande pas de la théorie ou des suppositions, j'aimerais la réponse concréte d'un utilisateur qui a déjà fait cette manip.

Merci d'avance !!

7 réponses

Bonjour, quand tu tapes la racine de 8 y'a 2 racine de 2, une fois ce résultat affiché, il faut appuyer sur les deux petites flèches en haut d'entrer.
41
Merci

Quelques mots de remerciements seront grandement appréciés. Ajouter un commentaire

CCM 42584 internautes nous ont dit merci ce mois-ci

C'est une TI-83 Plus, merci de te référer à cela...
Merci beaucoup j'ai réussi maintenant ça fait ded heures je suis dessus merci encore

il faut aller dans mode puis au lieu de résultat "auto" il faut choisir "déc" et voilà
Messages postés
4
Date d'inscription
dimanche 3 octobre 2010
Statut
Membre
Dernière intervention
29 mai 2012
6
tu penses que je peux pas faire cette manip ?? merde xD mais je pense que j'ai moyen de la faire quand meme^^ les casios peuvent le faire donc je pense que ma ti aussi...dautant quelle est assez récente (1an)

Ca ne répond pas totalement à ton problème mais voici un programme pour simplifier des racines sur les calculatrices ti :
:ClrHome
:Input "?(",N
:ClrHome
:Output(5,1,"Calcul en cours
:N?I
:While (N-I^2*iPart((N/I^2))?0 and I?0)
: I-1?I
:End
:If I?1
:Then
: I^2?C
: ClrHome
: Disp "Simplifiable par"
: Output(2,1,C
: Disp ""," ,","Racine simplifie"
: Output(7,1,?(C)
: Output(7,4,"?("
: Output(7,6,N/C
:Else
: ClrHome
: Disp "Non simplifiable"
:End
:Pause
:ClrHome
:Output(1,1,""
Bon ce programme ne marche pas !!! C'est nul !!!
bien sur qu'il marche, il suffit de remplacer les "?" par les bons symboles TI ;)
oui c'est quoi les symboles ?
Messages postés
4767
Date d'inscription
samedi 24 décembre 2005
Statut
Contributeur
Dernière intervention
12 mai 2019
1 203
Bonjour,

Je pense qu'il s'agit ici de calcul formel (comme la simplification d'expressions mathématiques). D'après ce que j'ai vu sur la toile, un tel logiciel n'est pas intégré d'origine à ta calculatrice, mais aurait été développé par une autre société que Texas Instruments pour ce modèle.

Pour les pc, il y a un logiciel qui remplit la tâche que tu demandes à la perfection, c'est Mathematica.

Il a même réussi à me retrouver la primitive de x tan[x] en deux coups de cuiller à pot ! J'avoue que j'ai été bluffé.
Messages postés
1
Date d'inscription
dimanche 9 février 2014
Statut
Membre
Dernière intervention
9 février 2014
1
Autocalc est un moteur de "calcul formel" (en fait il part du résultat arrondi pour arriver à simplifier l'expression) pour quasiment toutes les TI:
il permet d'afficher un résultat sous forme de racine, mais aussi exponentielle, logarithme,...

Je l'ai testé, il fonctionne bien mais il faut avoir suffisamment de ram libre pour l'exécution (même si le programme est optimisé normalement).
Il faut parfois attendre jusqu'à 30 secondes mais le résultat est bluffant

https://tiplanet.org/forum/archives_voir.php?id=981
Messages postés
24175
Date d'inscription
mardi 11 septembre 2007
Statut
Contributeur
Dernière intervention
10 septembre 2021
6 881
Bonjour,

J'ai bien compris que tu ne voulais pas de suppositions mais j'ai l'impression que ce que tu demandes est du domaine du calcul formel, ce que ta calculatrice ne sait pas faire.
Voir les TI89 et autres n-spire...
Casio en fait aussi.

eric
Combien fait racine carrer de 3 au carrer ? je comprend rien
la racine carré est pareil que le faite d'élevé le chiffre à la puissance 0,5 ou 1/2, en suite je vous rappel la règle de multiplication qui dit que (a^n)*(a^m)=a^(n+m)
donc racine(3)^2=racine(3)*racine(3)=3^0,5 * 3^0,5= 3^(0,5+0,5)=3^1=3