Comment mettre une note sur 6 sur 20
Résolubazfile Messages postés 56632 Date d'inscription samedi 29 décembre 2012 Statut Modérateur, Contributeur sécurité Dernière intervention 16 décembre 2024 - 12 juin 2024 à 14:16
- 5/6 sur 20
- Note sur 5 sur 20 - Meilleures réponses
- 6/15 sur 20 - Meilleures réponses
- Comment mettre une note sur 20 - Forum Bureautique
- Mettre une note sur 20 ✓ - Forum Bureautique
- Convertisseur note sur 20 - Forum Bureautique
- Ramener une note sur 20 ✓ - Forum Bureautique
- Redmi note 13 5g test - Accueil - Téléphones
3 réponses
31 mai 2024 à 22:18
Bonjour à tous,
5/6*20
Crdlmt
31 mai 2024 à 22:21
Bonjour.
C'est une simple règle de trois niveau école primaire, soit:
5 divisé par 6 multiplié par 20 = 16,66 .
31 mai 2024 à 22:54
Bonjour,
Pourquoi se trouve-t-il toujours quelqu'un pour "répondre" à ce type de "question" de fainéant récurrente alors que, comme il est justement remarqué, elle fait l'objet du programme CM1-CM2 et que la "majorité numérique" nécessaire pour s'inscrire sur un forum est en tout état de cause largement supérieure à l'âge évoqué?
Modifié le 1 juin 2024 à 01:55
Bonjour
Parce qu'on peut avoir ou pas 15 ans (avec autorisation d'un des parents), il n'est pas interdit d'aller sur un forum sans avoir atteint le niveau scolaire prévu à cet age.
Et on voit qu'il y a eu des manques à combler, quand la question est posée pour des notes bien après le cm2.
CCM est loin de faire partie des sites les plus dangereux.
1 juin 2024 à 01:30
C'est pourtant bien en CM2 que l'on apprend ça fasoeducation.net/cours_esu/primaire/cm2 .
1 juin 2024 à 07:19
L'élève n'a en effet pas pu ne pas apprendre la règle en question mais n'a alors su l'appliquer qu'aux exercices l'illustrant s'agissant par exemple de coupons de tissus, il ou elle peut soutenir à juste raison qu'aucun n'a concerné une histoire de notes ou d'autres choses pour lesquelles il ne sait d'autant pas extrapoler qu'il n'en saisit pas la matérialité.
Je m'étais vu confier jadis une apprentie bachelière et très élégante qui comprenait parfaitement quel bénéfice elle tirait d'acheter des mocassins à moins 25% mais à qui il n'a jamais été possible de faire comprendre comment réaliser 200 ml d'éosine à 1%.
Bonjour
Pour ce qui est de l'avoir appris ou pas je viens de lire une enquête académique par les services d'inspection destinée a son ministère ou au gouvernement je sais plus, 2013, c'est impressionnant, même les notes beaucoup savent pas ce que c'est ni leurs parents, sur 20 c'est franco-français parfois réservé à des épreuves de bac.
Les gens essaient de transformer en notes des bleu-vert rouge et des A B C D, des devoirs déjà coefficientés par le fait qu'ils sont tous sur 6 sur 18 sur 3, des acquis à revoir pas acquis.
https://cache.media.education.gouv.fr/file/2013/98/7/Rapport-IGEN-2013-072_274987.pdf
C'est même plus une question de moyennes et ils se plaignent qu'on respecte pas assez la consigne d'abandonner la notation chiffrée par endroits, si on lit on retrouve ce genre de choses depuis quelques décennies, au milieu de tout le reste.
On dirait presque que chaque sujet même des programmes nationaux, tout le monde en parle et semble connaître mais faut surtout pas aller vérifier si chacun a suivi, par endroits on peut lire aussi ça, au milieu de tout le reste. C'est aussi franco-français.
Et en plus on change de pays c'est plus les mêmes programmes.
________________
Aux infos une espèce de classement des huiles (de tables, en bouteilles vendues partout pour cuisiner manger faut préciser), les plus polluées!
Juste pour dire qu'il n'y a pas qu'une seule réalité
3 juin 2024 à 09:04
Bonjour,
Le système de notation lui-même est hors sujet (et ce qui simplifie le problème, dans ce cas de figure la notation est par définition 0).
L'apprentissage doit servir à appliquer plus tard en "mathématiques" la règle à un ensemble de concepts passant par la proportionnalité et dont on peine à concevoir qu'ils soient passés eux aussi à la trappe; de manière triviale, tout calcul de pourcentage (classe de 5ème), "résolution" du polynôme du premier degré ou "trigonométrique" à la petite semaine (théorème de Thalès, classe de 3ème) devient impossible.
Comme à s'en servir dans la vie réelle pour calculer au kilo le prix de la barquette de fraises.
Ce n'est donc pas tant l'acquisition isolément de tel savoir (ici la règle de trois) qui est en cause que le fait que sans, on est incapable de suivre une grande partie des programmes mathématiques des années suivantes et de comprendre des situations simples de la vie courante.